Hệ phương trình \(\left\{ \begin{array}{l}{x^2} = 3x - y\\{y^2} = 3y - x\end{array} \right.\) có bao nhiêu nghiệm?
Trả lời bởi giáo viên
\(\left\{ \begin{array}{l}{x^2} = 3x - y{\rm{ }}\,\left( 1 \right)\\{y^2} = 3y - x\,{\rm{ }}\left( 2 \right)\end{array} \right.\).
Lấy $\left( 1 \right)$ trừ $\left( 2 \right)$ theo vế ta được: \({x^2} - {y^2} = 4x - 4y\)\( \Leftrightarrow \left( {x - y} \right)\left( {x + y - 4} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}y = x\\y = 4 - x\end{array} \right.\).
TH1: \(\left\{ \begin{array}{l}{x^2} = 3x - y\,\\y = x\end{array} \right.\)$ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 2x = 0\,\\y = x\end{array} \right.$$ \Leftrightarrow \left[ \begin{array}{l}x = y = 0\\x = y = 2\end{array} \right.$.
TH2: \(\left\{ \begin{array}{l}{x^2} = 3x - y\,\\y = 4 - x\end{array} \right.\)$ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 4x + 4 = 0\,\\y = 4 - x\end{array} \right.$$ \Leftrightarrow x = y = 2$.
Vậy hệ có hai nghiệm.
Hướng dẫn giải:
- Trừ vế với vế hai phương trình cho nhau đưa về phương trình tích ẩn \(x,y\) suy ra mối quan hệ \(x,y\)
- Rút một ẩn theo ẩn còn lại và thay vào một trong hai phương trình của hệ rồi giải.