Gọi ${z_1}$, ${z_2}$ là hai nghiệm phức của phương trình ${z^2} - 2z + 2 = 0$. Tính giá trị biểu thức $P = z_1^{2016} + z_2^{2016}.$
Trả lời bởi giáo viên
Biệt số $\Delta = 4 - 8 = - 4 = {\left( {2i} \right)^2}$.
Do đó phương trình có hai nghiệm phức: ${z_1} = \dfrac{{2 - 2i}}{2} = 1 - i$ và ${z_2} = \dfrac{{2 + 2i}}{2} = 1 + i$.
Suy ra $z_1^{2016} = {\left( {1 - i} \right)^{2016}} = {\left[ {{{\left( {1 - i} \right)}^2}} \right]^{1008}} = {\left( { - 2i} \right)^{1008}} = {\left( { - 2} \right)^{1008}}.{i^{1008}} = {2^{1008}}.1 = {2^{1008}}$;
$z_2^{2016} = {\left( {1 + i} \right)^{2016}} = {\left[ {{{\left( {1 + i} \right)}^2}} \right]^{1008}} = {\left( {2i} \right)^{1008}} = {2^{1008}}.{i^{1008}} = {2^{1008}}.1 = {2^{1008}}$.
Vậy $P = z_1^{2016} + z_2^{2016} = {2^{1008}} + {2^{1008}} = {2^{1009}}$.
Hướng dẫn giải:
- Giải phương trình tìm nghiệm.
- Thay vào tính giá trị biểu thức.