Trả lời bởi giáo viên

Đáp án đúng: b

Ta có: \(y =  - 2{x^2}\)  có \(a =  - 2 < 0 \Rightarrow \) đồ thị hàm số có bề lõm hướng xuống dưới.

Và hàm số đồng biến khi \(x < 0,\) hàm số nghịch biến khi \(x > 0.\)

+) Với \( - 3 \le x < 0\) ta có: \(y\left( { - 3} \right) \le y\left( x \right) < y\left( 0 \right) \Leftrightarrow  - 18 \le y\left( x \right) < 0.\) 

+) Với \(0 \le x \le 5\) ta có: \(y\left( 0 \right) \ge y\left( x \right) \ge y\left( 5 \right) \Leftrightarrow 0 \ge y\left( x \right) \ge  - 50\)

\( \Rightarrow \) Với mọi \(x \in \left[ { - 3;\,\,5} \right]\) ta có: \( - 50 \le y\left( x \right) \le 0\)

Vậy \(\mathop {Min}\limits_{\left[ { - 3;\,\,5} \right]} y = y\left( { - 5} \right) =  - 50.\)

Hướng dẫn giải:

Xét hàm số: \(y = a{x^2}\,\,\,\left( {a \ne 0} \right)\) ta có:

+) TH1: \(a > 0\) thì hàm số đồng biến khi \(x > 0\) và nghịch biến khi \(x < 0.\)

+) TH2: \(a < 0\) thì hàm số đồng biến khi \(x < 0\) và nghịch biến khi \(x > 0.\)

Câu hỏi khác