Đề thi thử THPT chuyên Lam Sơn - 2021
Đặt điện áp xoay chiều có giá trị hiệu dụng và tần số không đổi vào hai đâu đoạn mạch AB mắc nối tiếp gồm điện trở R không đổi và cuộn cảm thuần có độ tự cảm L thay đổi được. Gọi \(\varphi \) là độ lệch pha của điện áp hai đầu đoạn mạch và cường độ dòng điện trong đoạn mạch. Hình vẽ bên là đồ thị của công suất mà mạch tiêu thụ theo giá trị của \(\varphi \). Giá trị \({\varphi _1}\) gần giá trị nào nhất sau đây?
Trả lời bởi giáo viên
Từ đồ thị ta có:
Khi \(\varphi = 0 \to {P_{ma{\rm{x}}}} = {P_0} = \frac{{{U^2}}}{R}\,\,\,\,\left( 1 \right)\)
Khi \(\varphi = {\varphi _1} \to P = \frac{3}{4}{P_0} = UI\cos \varphi = \frac{{{U^2}}}{{{Z^2}}}R\,\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) ta suy ra: \(\frac{3}{4}\frac{{{U^2}}}{R} = \frac{{{U^2}}}{{{Z^2}}}R\)
\( \Rightarrow 3{{\rm{Z}}^2} = 4{{\rm{R}}^2} \Leftrightarrow 3\left( {{R^2} + Z_L^2} \right) = 4{{\rm{R}}^2} \Rightarrow {Z_L} = \frac{R}{{\sqrt 3 }}\)
Lại có: \(\tan {\varphi _1} = \frac{{{Z_L}}}{R} = \frac{1}{{\sqrt 3 }} \Rightarrow {\varphi _1} = \frac{\pi }{6}\) rad
Hướng dẫn giải:
+ Đọc đồ thị
+ Sử dụng biểu thức tính công suất: \(P = UIco{\rm{s}}\varphi \)
+ Sử dụng biểu thức tính: \(\tan \varphi = \frac{{{Z_L} - {Z_C}}}{R}\)