Đặt điện áp u = U0cosωt vào hai đầu đoạn mạch như hình bên. Biết tụ điện có điện dung C thay đổi được. Đồ thị hình bên mô tả số chỉ của vôn kế V1 và vôn kế V2 tương ứng là UV1 và UV2 phụ thuộc vào điện dung C. Biết U3 = 2U2. Tỉ số \(\frac{{{U_2}}}{{{U_4}}}\) là
Trả lời bởi giáo viên
Từ đồ thị ta thấy khi \({{Z}_{C}}={{Z}_{C1}}~\Rightarrow {{U}_{V1max}}={{U}_{3}}=U\) → mạch có cộng hưởng: ZL = ZC1
Khi đó: \({U_{V2}} = {U_C} = {U_2} \Rightarrow \frac{{U{Z_{C1}}}}{R} = {U_2}\)
Ta có: \({U_3} = 2{U_2} \Rightarrow U = 2\frac{{U.{Z_{C1}}}}{R} \Rightarrow R = 2{Z_{C1}} = 2{Z_L}\)
\( \Rightarrow {U_2} = \frac{{U{Z_{C1}}}}{R} = \frac{{U.{Z_L}}}{R} = \frac{U}{2}\)
Khi \({Z_C} = {Z_{C2}} \Rightarrow {U_{V2\max }} = {U_{C\max }} = {U_4} \Rightarrow {U_4} = \frac{{U\sqrt {{R^2} + {Z_L}^2} }}{R}\)
\(\begin{array}{l} \Rightarrow {U_4} = \frac{{U\sqrt {{R^2} + {Z_L}^2} }}{R} = \frac{{U.\sqrt {4{Z_L}^2 + {Z_L}^2} }}{{2{Z_L}}} = \frac{{U\sqrt 5 }}{2}\\ \Rightarrow \frac{{{U_2}}}{{{U_4}}} = \frac{{\frac{U}{2}}}{{\frac{{U\sqrt 5 }}{2}}} = \frac{1}{{\sqrt 5 }}\end{array}\)
Hướng dẫn giải:
Sử dụng kĩ năng đọc đồ thị
Khi C thay đổi, điện áp giữa hai đầu điện trở đạt cực đại: UR = U → mạch có cộng hưởng: ZL = ZC
Điện áp giữa hai đầu tụ điện đạt cực đại: \({U_{C\max }} = \frac{{U\sqrt {{R^2} + {Z_L}^2} }}{R}\) khi \({Z_C} = \frac{{{R^2} + {Z_L}^2}}{{{Z_L}}}\)