Có bao nhiêu giá trị của \(x\) thỏa mãn \({\left( {x - 3} \right)^2} - 9{\left( {x + 1} \right)^2} = 0\) ?
Trả lời bởi giáo viên
Ta có \({\left( {x - 3} \right)^2} - 9{\left( {x + 1} \right)^2} = 0\)\( \Leftrightarrow {\left( {x - 3} \right)^2} - {\left[ {3\left( {x + 1} \right)} \right]^2} = 0 \Leftrightarrow {\left( {x - 3} \right)^2} - {\left( {3x + 3} \right)^2} = 0\)
\( \Leftrightarrow \left( {x - 3 + 3x + 3} \right)\left( {x - 3 - 3x - 3} \right) = 0\)\( \Leftrightarrow 4x\left( { - 2x - 6} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}4x = 0\\ - 2x - 6 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\ - 2x = 6\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 3\end{array} \right.\)
Vậy có hai giá trị của \(x\) thỏa mãn là \(x = 0;x = - 3\) .
Hướng dẫn giải:
+ Sử dụng hằng đẳng thức \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\) để phân tích đa thức thành nhân tử.
+ Từ đó đưa về dạng \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)