Trả lời bởi giáo viên
Ta có ${\left( {x - 1} \right)^3} + 2{\left( {x - 1} \right)^2} = {\left( {x - 1} \right)^2}\left( {x - 1} \right) + 2.{\left( {x - 1} \right)^2} = {\left( {x - 1} \right)^2}\left( {x - 1 + 2} \right) = {\left( {x - 1} \right)^2}\left( {x + 1} \right)$ nên A đúng
+) ${\left( {x - 1} \right)^3} + 2\left( {x - 1} \right) $$= \left( {x - 1} \right).{\left( {x - 1} \right)^2} + 2\left( {x - 1} \right) $$= \left( {x - 1} \right)\left[ {{{\left( {x - 1} \right)}^2} + 2} \right]$ nên B đúng
+) ${\left( {x - 1} \right)^3} + 2{\left( {x - 1} \right)^2} $$= \left( {x - 1} \right){\left( {x - 1} \right)^2} + 2\left( {x - 1} \right)\left( {x - 1} \right) $$= \left( {x - 1} \right)\left[ {{{\left( {x - 1} \right)}^2} + 2\left( {x - 1} \right)} \right] $$=\left( {x - 1} \right)\left[ {{{\left( {x - 1} \right)}^2} + 2x - 2} \right]$
nên C đúng.
+) ${\left( {x - 1} \right)^3} + 2{\left( {x - 1} \right)^2} $\( = {\left( {x - 1} \right)^2}\left( {x - 1 + 2} \right) \)\(= {\left( {x - 1} \right)^2}\left( {x + 1} \right)\)
$ \ne \left( {x - 1} \right)\left( {x + 3} \right)$
nên D sai.