Trả lời bởi giáo viên
\( + )\;{x^2} + 4x - {y^2} + 4 = \left( {{x^2} + 4x + 4} \right) - {y^2} = \left( {{x^2} + 2.2.x + {2^2}} \right) - {y^2} = {\left( {x + 2} \right)^2} - {y^2} = \left( {x - y + 2} \right)\left( {x + y + 2} \right)\)
\( + )\;{\left( {2{x^2} - y} \right)^2} - 64{y^2} = {\left( {2{x^2} - y} \right)^2} - {\left( {8y} \right)^2} = \left( {2{x^2} - y - 8y} \right)\left( {2{x^2} - y + 8y} \right) = \left( {2{x^2} - 9y} \right)\left( {2{x^2} + 7y} \right)\)
\( + )\; - {x^3} + 6{x^2}y - 12x{y^2} + 8{y^3} = {\left( { - x} \right)^3} + 3.{x^2}.2y + 3.\left( { - x} \right).{\left( {2y} \right)^2} + {\left( {2y} \right)^3} = {\left( { - x + 2y} \right)^3} = {\left( {2y - x} \right)^3}\)
\( + )\;{x^8} - {y^8} = {\left( {{x^4}} \right)^2} - {\left( {{y^4}} \right)^2} = \left( {{x^4} + {y^4}} \right)\left( {{x^4} - {y^4}} \right)\)
\( = \left( {{x^4} + {y^4}} \right)\left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = \left( {{x^4} + {y^4}} \right)\left( {{x^2} + {y^2}} \right)\left( {x + y} \right)\left( {x - y} \right)\)
Nên A, B, C đúng. D sai.
Hướng dẫn giải:
Sử dụng các phương pháp đặt nhân tử chung, dùng hằng đẳng thức, thêm bớt hạng tử .. và phối hợp nhiều phương pháp để phân tích.