Cho \(x + y = a + b;\,{x^2} + {y^2} = {a^2} + {b^2}.\) Với \(n \in {\mathbb{N}^*}\), chọn câu đúng.
Trả lời bởi giáo viên
Ta có \({x^2} + {y^2} = {a^2} + {b^2} \Leftrightarrow {x^2} - {a^2} = {b^2} - {y^2}\)\( \Leftrightarrow \left( {x - a} \right)\left( {x + a} \right) = \left( {b - y} \right)\left( {b + y} \right)\)
Mà \(x + y = a + b \Leftrightarrow x - a = b - y\) nên ta có \(\left( {x - a} \right)\left( {x + a} \right) = \left( {x - a} \right)\left( {b + y} \right)\)
\(\begin{array}{l} \Leftrightarrow \left( {x - a} \right)\left( {x + a} \right) - \left( {x - a} \right)\left( {b + y} \right) = 0\\ \Leftrightarrow \left( {x - a} \right)\left( {x + a - b - y} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - a = 0\\x + a - b - y = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = a\\x - y = b - a\end{array} \right.\end{array}\)
+ Với \(x = a\) mà \(x + y = a + b \Rightarrow a + y = a + b \Rightarrow y = b\). Từ đó ta có \({x^n} + {y^n} = {a^n} + {b^n}\) với mọi \(n \in {\mathbb{N}^*}\).
+ Với \(x - y = b - a\), lại có \(x + y = a + b\) nên cộng vế với vế ta được \(2x = 2b \Leftrightarrow x = b \Rightarrow y = a\)
Từ đó ta có \({x^n} + {y^n} = {a^n} + {b^n}\) với mọi \(n \in {\mathbb{N}^*}\).
Vậy \({x^n} + {y^n} = {a^n} + {b^n}\) với mọi \(n \in {\mathbb{N}^*}\).
Hướng dẫn giải:
Dùng hằng đẳng thức \({A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right)\) để biến đổi giả thiết và lập luận để có \(x = a;y = b\) hoặc \(x = b;y = a\). Từ đó suy ra hệ thức đúng.