Câu hỏi:
2 năm trước

Cho \(\dfrac{{{x^2}}}{{y + z}} + \dfrac{{{y^2}}}{{x + z}} + \dfrac{{{z^2}}}{{x + y}} = 0\) và \(x + y + z \ne 0.\) Tính giá trị của biểu thức \(A = \dfrac{x}{{y + z}} + \dfrac{y}{{x + z}} + \dfrac{z}{{x + y}}\)

Trả lời bởi giáo viên

Đáp án đúng: d

Vì \(\dfrac{{{x^2}}}{{y + z}} + \dfrac{{{y^2}}}{{x + z}} + \dfrac{{{z^2}}}{{x + y}} = 0\) nên ta có

\(x + y + z = x + y + z + 0\) \( = x + y + z + \dfrac{{{x^2}}}{{y + z}} + \dfrac{{{y^2}}}{{x + z}} + \dfrac{{{z^2}}}{{x + y}}\)

\( = \left( {x + \dfrac{{{x^2}}}{{y + z}}} \right) + \left( {y + \dfrac{{{y^2}}}{{x + z}}} \right) + \left( {z + \dfrac{{{z^2}}}{{x + y}}} \right)\)

\( = x\left( {1 + \dfrac{x}{{y + z}}} \right) + y\left( {1 + \dfrac{y}{{x + z}}} \right) + z\left( {1 + \dfrac{z}{{x + y}}} \right)\)

\( = x\left( {\dfrac{{x + y + z}}{{y + z}}} \right) + y\left( {\dfrac{{x + y + z}}{{x + z}}} \right) + z\left( {\dfrac{{x + y + z}}{{x + y}}} \right)\)

\( = \left( {x + y + z} \right)\left( {\dfrac{x}{{y + z}} + \dfrac{y}{{x + z}} + \dfrac{z}{{x + y}}} \right)\)

Suy ra \(x + y + z = \left( {x + y + z} \right)\left( {\dfrac{x}{{y + z}} + \dfrac{y}{{x + z}} + \dfrac{z}{{x + y}}} \right)\)

Mà \(x + y + z \ne 0\) nên \(\dfrac{x}{{y + z}} + \dfrac{y}{{x + z}} + \dfrac{z}{{x + y}} = 1\)

Hay \(A = 1.\)

Hướng dẫn giải:

+ Sử dụng dữ kiện \(\dfrac{{{x^2}}}{{y + z}} + \dfrac{{{y^2}}}{{x + z}} + \dfrac{{{z^2}}}{{x + y}} = 0\) để xét \(x + y + z + 0\)

+ Từ đó nhóm các hạng tử thích hợp để xuất hiện biểu thức \(A = \dfrac{x}{{y + z}} + \dfrac{y}{{x + z}} + \dfrac{z}{{x + y}}\), từ đó ta tính được giá trị.

Câu hỏi khác