Cho tứ diện \(ABCD\) có \(AB,AC,AD\) đôi một vuông góc. Chỉ ra mệnh đề sai trong các mệnh đề sau:
Trả lời bởi giáo viên
\(\begin{array}{l}\left\{ \begin{array}{l}AD \bot AB\\AD \bot AC\end{array} \right. \Rightarrow AD \bot \left( {ABC} \right) \Rightarrow \left( {ACD} \right) \bot \left( {ABC} \right);\left( {ABD} \right) \bot \left( {ABC} \right)\\\left\{ \begin{array}{l}AC \bot AD\\AC \bot AB\end{array} \right. \Rightarrow AC \bot \left( {ABD} \right) \Rightarrow \left( {ACD} \right) \bot \left( {ABD} \right)\end{array}\)
\(\Rightarrow \) A đúng.
\(AD\bot \left( ABC \right)\Rightarrow AD\bot BC\). Tương tự ta chứng minh được
\(AB\bot CD;\,\,AC\bot BD\Rightarrow D\) đúng.
Gọi H là trực tâm của tam giác BCD ta có \(\left\{ \begin{align} DH\bot BC \\ AD\bot BC \\ \end{align} \right.\Rightarrow BC\bot \left( ADH \right)\Rightarrow AH\bot BC\)
Tương tự ta chứng minh được \(AH\bot BD;\,\,AH\bot CD\Rightarrow AH\bot \left( BCD \right)\) \(\Rightarrow \) B đúng.
Chưa đủ điều kiện để kết luận tam giác \(BCD\) vuông.
Hướng dẫn giải:
Xét tính đúng sai của từng đáp án, sử dụng lý thuyết của hai mặt phẳng vuông góc: Một đường thẳng vuông góc với mặt phẳng này thì mọi mặt phẳng chứa đường thẳng đều vuông góc với mặt phẳng đã cho.