Câu hỏi:
2 năm trước
Cho tam giác \(ABC\), đường trung tuyến \(AM\). Gọi \(D\) là trung điểm của \(AM,E\) là giao điểm của \(BD\) và \(AC,F\) là trung điểm của \(EC\). Tính \(AE\) biết \(AC = 9cm\).
Trả lời bởi giáo viên
Đáp án đúng: b
Xét tam giác \(BEM\) có \(BM = MC,EF = FC\) nên \(MF\) là đường trung bình của tam giác \(BEC\). Do đó \(MF{\rm{//}}BE\).
Xét tam giác \(AMF\) có \(AD = DM,DE//MF\) nên \(DE\) là đường trung bình của tam giác \(AMF\). Do đó \(AE = EF\).
Do đó \(AE = EF = FC\) nên \(AE = \dfrac{1}{3}AC = \dfrac{1}{3}. 9 = 3cm\).
Hướng dẫn giải:
Bước 1: Sử dụng các dấu hiệu nhận biết đường trung bình để chứng minh các đoạn thẳng là đường trung bình của tam giác.
Bước 2: Từ đó rút ra các mối liện hệ giữa các đoạn thẳng.