Cho tam giác ABC đều, H là trực tâm, đường cao AD. M là điểm bất kì trên trên cạnh BC. Gọi E, F lần lượt là hình chiếu của M trên AB, AC, gọi I là trung điểm của đoạn thẳng AM. ID cắt EF tại K.
Chọn câu sai.
Trả lời bởi giáo viên
Tam giác EAM vuông tại E, EI là đường trung tuyến nên: \(EI = IM = IA = \dfrac{1}{2}AM\).
Từ EI = IA suy ra tam giác IAE cân tại I, từ đó có: \(\widehat {EIM} = 2\widehat {EAI}\) (góc ngoài của tam giác).
Chứng minh tương tự với tam giác vuông \(ADM\) ta có: \(\widehat {MID} = 2\widehat {IAD},DI = \dfrac{1}{2}AM\).
Do đó:
\(EI = DI\,\,\left( { = \dfrac{1}{2}AM} \right);\,\,\,\widehat {EID} = \widehat {EIM} + \widehat {MID} = 2\left( {\widehat {EAI} + \widehat {IAD}} \right) = 2\widehat {EAD} = {60^0}\).
Tam giác IED cân (vì EI = DI) có: \(\widehat {EID} = {60^0}\) nên là tam giác đều, từ đó EI = ED = ID.
Tương tự tam giác IDF đều suy ra: \(ID = DF = IF.\)
Do đó \(EI = ED = DF = IF.\) Suy ra tứ giác EIFD là hình thoi.
Suy ra K là trung điểm chung của EF và ID.
Gọi N là trung điểm của AH.
Tam giác ABC đều có H là trực tâm của tam giác ABC nên H cũng là trọng tâm tam giác.
Do đó \(AN = NH = HD.\)
Ta có: \(MH//IN\) (vì IN là đường trung bình của tam giác AMH) và \(KH//IN\) (vì KH là đường trung bình của tam giác DIN).
Từ H ta chỉ vẽ được một đường thẳng song song với IN (tiên đề Ơ – Clit) nên M, H, K thẳng hàng.
Vậy D sai vì \(ID = IF\)
Hướng dẫn giải:
+ Vẽ thêm $N$ là trung điểm của $AH.$
+ Ta chứng minh $MH//IN, KH//IN.$ Từ đó suy luận để có tính đúng sai của từng đáp án.