Trả lời bởi giáo viên

Đáp án đúng: a

Ta có :  \(\hat A = 70^\circ \)

Theo ý a) suy ra:

\(\widehat {ADE} = \widehat {AED} = \widehat {ABC} = \widehat {ACB} = \left( {180^\circ  - \widehat {DAE}} \right):2\;\)\( = (180^\circ  - 70^\circ ):2 = 55^\circ \;\;\;\;\;\;\)

Vì \(\widehat {BDE}\) và  \(\widehat {ADE}\) là hai góc kề bù nên \(\widehat {BDE} = 180^\circ  - \widehat {ADE} = 180^\circ  - 55^\circ  = 125^\circ \)$ \Rightarrow \widehat {DEC} = 125^\circ $   (Vì $DEBC$ là hình thang cân)

Vậy \(\widehat {BDE} = \widehat {DEC} = 125^\circ ;\,\widehat {DBC} = \widehat {ECB} = 55^\circ \) .

 

Hướng dẫn giải:

Ta sử dụng định lý về tổng các góc trong tam giác và tính chất về góc của hình thang cân.

Câu hỏi khác