Câu hỏi:
2 năm trước
Cho phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) có biệt thức \(b = 2b';\Delta ' = b{'^2} - ac\). Phương trình đã cho vô nghiệm khi
Trả lời bởi giáo viên
Đáp án đúng: d
Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = b{'^2} - ac.\)
Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.
Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} = - \dfrac{{b'}}{a}\)
Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,}}_2 = - \dfrac{{b' \pm \sqrt {\Delta '} }}{a}\)