Câu hỏi:
2 năm trước

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB = a,{\rm{ }}AC = a\sqrt 3 $. Tam giác $SBC$ đều và nằm trong mặt phẳng vuông với đáy. Tính khoảng cách $d$ từ $B$ đến mặt phẳng $\left( {SAC} \right)$.

Trả lời bởi giáo viên

Đáp án đúng: c

Gọi $H$ là trung điểm của $BC,$ suy ra $SH \bot BC \Rightarrow SH \bot \left( {ABC} \right)$.

Gọi $K$ là trung điểm $AC$, suy ra $HK \bot AC$.

Kẻ $HE \bot SK\,\,\,\,\left( {E \in SK} \right).\,\,\,\,\,\,\,\,\left( 1 \right)$

Ta có:\(\left\{ \begin{array}{l}AC \bot HK\\AC \bot SH\end{array} \right. \Rightarrow AC \bot \left( {SHK} \right)\)\( \Rightarrow AC \bot HE\left( 2 \right)\)

Từ (1) và (2) \( \Rightarrow HE \bot \left( {SAC} \right) \Rightarrow HE = d\left( {H;\left( {SAC} \right)} \right)\)  

Ta có :

\(BH \cap \left( {SAC} \right) = C \Rightarrow \dfrac{{d\left( {B;\left( {SAC} \right)} \right)}}{{d\left( {H;\left( {SAC} \right)} \right)}} \)\(= \dfrac{{BC}}{{HC}} \)\(= 2\)\( \Rightarrow d\left( {B;\left( {SAC} \right)} \right) = 2d\left( {H;\left( {SAC} \right)} \right) = 2HE\)

Tam giác \(ABC\) vuông tại \(A\) nên \(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt {{a^2} + 3{a^2}}\)\(  = 2a\)

Tam giác \(SBC\) đều cạnh \(2a\) nên đường cao \(SH = \dfrac{{2a\sqrt 3 }}{2} = a\sqrt 3 \)  

Lại có \(HK\) là đường trung bình của tam giác \(ABC\) nên \(HK = \dfrac{1}{2}AB = \dfrac{a}{2}\)

Vậy \(d\left( {B;\left( {SAC} \right)} \right) = 2HE \)\(= \dfrac{{SH.HK}}{{\sqrt {S{H^2} + H{K^2}} }} \)\( = \dfrac{{2a\sqrt {39} }}{{13}}.\)

Hướng dẫn giải:

Sử dụng phương pháp kẻ chân đường cao từ điểm đến mặt phẳng (lý thuyết đường thẳng vuông góc với mặt phẳng) để xác định khoảng cách từ một điểm đến mặt phẳng

Câu hỏi khác