Cho hình chóp \(S.ABCD\) có đáy là hình thang vuông tại \(A\) và \(B\), \(AD = a,\) \(AB = 2a,\) \(BC = 3a,\) \(SA = 2a\), \(H\) là trung điểm cạnh \(AB\), \(SH\) là đường cao của hình chóp \(S.ABCD\). Tính khoảng cách từ điểm \(A\) đến mặt phẳng \(\left( {SCD} \right)\).
Trả lời bởi giáo viên
Ta có \(SH = a\sqrt 3 ;\)\(HC = a\sqrt {10} ;\) \(HD = a\sqrt 2 ;\) \(DC = a\sqrt 8 \) \( \Rightarrow H{C^2} = H{D^2} + D{C^2}\)
Vậy tam giác \(HDC\) vuông tại \(D\).
Gọi \(M\) là trung điểm của \(CD\).
Ta có: \(\dfrac{{d\left( {A;\left( {SCD} \right)} \right)}}{{d\left( {H;\left( {SCD} \right)} \right)}} = \dfrac{{OA}}{{OH}} = \dfrac{{AD}}{{HM}} = \dfrac{{2AD}}{{AD + BC}} = \dfrac{1}{2} \)
\(\Rightarrow d\left( {A;\left( {SCD} \right)} \right) = \dfrac{1}{2}.d\left( {H;\left( {SCD} \right)} \right) = \dfrac{1}{2}.HK\)
Trong đó \(K\) là hình chiếu vuông góc của \(H \) lên \(SD\). Ta có:
\(\dfrac{1}{{H{K^2}}} = \dfrac{1}{{H{D^2}}} + \dfrac{1}{{H{S^2}}} = \dfrac{1}{{2{a^2}}} + \dfrac{1}{{3{a^2}}} = \dfrac{5}{{6{a^2}}}\)
\( \Rightarrow HK = \dfrac{{a\sqrt 6 }}{{\sqrt 5 }} \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = \dfrac{{a\sqrt 6 }}{{2\sqrt 5 }} = \dfrac{{a\sqrt {30} }}{{10}}\).
Hướng dẫn giải:
Sử dụng phương pháp kẻ chân đường cao từ điểm đến mặt phẳng (lý thuyết đường thẳng vuông góc với mặt phẳng) để xác định khoảng cách từ một điểm đến mặt phẳng