Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\) và độ dài các cạnh bên \(SA = SB = SC = b.\) Gọi \(G\) là trọng tâm của tam giác \(ABC.\) Độ dài đoạn thẳng \(SG\) bằng
Trả lời bởi giáo viên
Vì \(SA = SB = SC\) và \(G\) là trọng tâm tam giác \(ABC\)
Suy ra \(G\) là chân đường cao kẻ từ đỉnh \(S\) xuống mặt phẳng \(\left( {ABC} \right).\)
Gọi \(M\) là trung điểm của \(BC\) suy ra \(BM = CM = \dfrac{{BC}}{2} = \dfrac{a}{2}.\)
Tam giác \(ABC\) đều cạnh \(a,\) có \(GM = \dfrac{{AM}}{3} = \dfrac{{a\sqrt 3 }}{2}.\dfrac{1}{3} = \dfrac{{a\sqrt 3 }}{6}.\)
Tam giác \(SBM\) vuông tại \(M,\) có \(SM = \sqrt {S{B^2} - M{B^2}} = \sqrt {{b^2} - \dfrac{{{a^2}}}{4}} .\)
Tam giác \(SGM\) vuông tại \(G,\) có \(SG = \sqrt {S{M^2} - G{M^2}} = \sqrt {{b^2} - \dfrac{{{a^2}}}{4} - \dfrac{{{a^2}}}{{12}}} = \dfrac{{\sqrt {9{b^2} - 3{a^2}} }}{3}.\)
Hướng dẫn giải:
Chứng minh \(SG \bot \left( {ABC} \right)\) rồi tính toán dựa vào các kiến thức hình học đã biết.