Câu hỏi:
2 năm trước

Cho hình chóp $A.BCD$ có cạnh $AC \bot \left( {BCD} \right)$ và $BCD$  là tam giác đều cạnh bằng $a.$ Biết $AC = a\sqrt 2 $ và $M$ là trung điểm của $BD.$ Khoảng cách từ $C$ đến đường thẳng $AM$ bằng

Trả lời bởi giáo viên

Đáp án đúng: c

Dựng hình chiếu $H$ của $C$ trên $AM$

Do \(\Delta BCD\) đều cạnh \(a\) nên đường cao \(MC = \dfrac{{a\sqrt 3 }}{2}\)

\(d\left( {C,AM} \right) = CH = \dfrac{{AC.MC}}{{\sqrt {A{C^2} + M{C^2}} }} = \dfrac{{a\sqrt {66} }}{{11}}\)

Lời giải - Đề kiểm tra 1 tiết chương 8: Quan hệ vuông góc trong không gian - Đề số 2 - ảnh 1

Hướng dẫn giải:

- Dựng hình chiếu \(H\) của \(C\) trên \(AM\).

- Sử dụng các hệ thức trong tam giác vuông để tính \(CH\)

Câu hỏi khác