Cho hàm số \(y=f(x)={{x}^{3}}-3{{x}^{2}}-4x\,\,(C)\). Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành. Phát biểu nào sau đây đúng?
Trả lời bởi giáo viên
Diện tích hình phẳng giới hạn bởi đồ thị hàm số (C) và trục hoành là:
\(S=\int\limits_{-1}^{4}{\left| {{x}^{3}}-3{{x}^{2}}-4x \right|dx}=\int\limits_{-1}^{0}{\left| {{x}^{3}}-3{{x}^{2}}-4x \right|dx+}\int\limits_{0}^{4}{\left| {{x}^{3}}-3{{x}^{2}}-4x \right|dx}=\int\limits_{-1}^{0}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx-}\int\limits_{0}^{4}{\left( {{x}^{3}}-3{{x}^{2}}-4x \right)dx}\)
Hướng dẫn giải:
Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số \(y=f(x),\,\,y=g(x)\), trục hoành và hai đường thẳng \(x=a;\,\,x=b\) được tính theo công thức : \(S=\int\limits_{a}^{b}{\left| f(x)-g(x) \right|dx}\)