Cho hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) biết \(a > 0\), \(c > 2017\) và \(a + b + c < 2017\). Số điểm cực trị của hàm số \(y = \left| {f\left( x \right) - 2017} \right|\) là:
Trả lời bởi giáo viên
Hàm số \(y = f\left( x \right) = a{x^4} + b{x^2} + c\) xác định và liên tục trên \(D = \mathbb{R}\).
Ta có \(f\left( 0 \right) = c > 2017 > 0\).
\(f\left( { - 1} \right) = f\left( 1 \right) = a + b + c < 2017\)
Do đó \(\left[ {f\left( { - 1} \right) - 2017} \right].\left[ {f\left( 0 \right) - 2017} \right] < 0\) và \(\left[ {f\left( 1 \right) - 2017} \right].\left[ {f\left( 0 \right) - 2017} \right] < 0\)
Mặt khác \(\mathop {\lim }\limits_{x \to \pm \infty } f\left( x \right) = + \infty \) nên \(\exists \alpha < 0\), \(\beta > 0\) sao cho \(f\left( \alpha \right) > 2017\), \(f\left( \beta \right) > 2017\)
\(\left[ {f\left( \alpha \right) - 2017} \right].\left[ {f\left( { - 1} \right) - 2017} \right] < 0\) và \(\left[ {f\left( \beta \right) - 2017} \right].\left[ {f\left( 1 \right) - 2017} \right] < 0\)
Suy ra đồ thị hàm số \(y = f\left( x \right) - 2017\) cắt trục hoành tại bốn điểm phân biệt
Đồ thị hàm số \(y = \left| {f\left( x \right) - 2017} \right|\) có dạng
Vậy số điểm cực trị của hàm số \(y = \left| {f\left( x \right) - 2017} \right|\) là \(7\) .