Cho hàm số $f\left( x \right) = {x^2} + 2x - 3$.
Xét các mệnh đề sau:
i) $f\left( {x - 1} \right) = {x^2} - 4$
ii) Hàm số đã cho đồng biến trên $\left( { - 1;\,\, + \infty } \right)$
iii) Giá trị nhỏ nhất của hàm số là một số âm.
iv) Phương trình $f\left( x \right) = m$ có nghiệm khi $m \ge - 4$
Số mệnh đề đúng là:
Trả lời bởi giáo viên
Ta có $f\left( {x - 1} \right) = {\left( {x - 1} \right)^2} + 2\left( {x - 1} \right) - 3 $ $= {x^2} - 4$
Với trục đối xứng $x = - \dfrac{b}{{2a}} = - 1$ và hệ số $a = 1 > 0$ thì hàm số đồng biến trên $\left( { - 1;\,\, + \infty } \right)$
Biến đối $f\left( x \right) = {x^2} + 2x - 3 = {\left( {x + 1} \right)^2} - 4 \ge - 4$ $ \Rightarrow $ GTNN của hàm số là $-4 < 0$
Dễ thấy $f\left( x \right) = m \Leftrightarrow {\left( {x + 1} \right)^2} = m + 4$ nên để phương trình có nghiệm thì $m + 4 \ge 0 \Leftrightarrow m \ge - 4$
Hướng dẫn giải:
Sử dụng các tính chất của hàm số bậc hai và giá trị lớn nhất, nhỏ nhất, tính đơn điệu, điều kiện có nghiệm của phương trình.