Viết phương trình của Parabol $(P)$ biết rằng $(P)$ đi qua các điểm $A\left( {0;\,\,2} \right),\,\,B\left( { - 2;\,\,5} \right),\,\,C\left( {3;\,\,8} \right)$
Trả lời bởi giáo viên
Phương trình $\left( P \right)$ có dạng $y = a{x^2} + bx + c\,\,\,\,\left( {a \ne 0} \right)$
Ba điểm $A,\,\,B,\,\,C$ thuộc $\left( P \right)$ nên tọa độ của chúng phải thỏa mãn phương trình $\left( P \right)$
Do đó, ta có hệ phương trình:$\left\{ \begin{array}{l}2 = a{.0^2} + b.0 + c\\5 = a.{\left( { - 2} \right)^2} + b.\left( { - 2} \right) + c\\8 = a{.3^2} + b.3 + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \dfrac{7}{{10}}\\b = - \dfrac{1}{{10}}\\c = 2\end{array} \right.$
Suy ra phương trình của $\left( P \right)$ là: $y = \dfrac{7}{{10}}{x^2} - \dfrac{1}{{10}}x + 2$
Hướng dẫn giải:
Thay tọa độ các điểm \(A,B,C\) và phương trình parabol.