Câu hỏi:
2 năm trước
Cho hai số \( - 3\) và \(23.\) Xen kẽ giữa hai số đã cho \(n\) số hạng để tất cả các số đó tạo thành cấp số cộng có công sai \(d = 2.\) Tìm \(n.\)
Trả lời bởi giáo viên
Đáp án đúng: a
Theo giả thiết thì ta được một cấp số cộng có \(n + 2\) số hạng với \({u_1} = - 3,\,\,{u_{n + 2}} = 23.\)
Khi đó \({u_{n + 2}} = {u_1} + \left( {n + 1} \right)d\) \( \Leftrightarrow n + 1 = \dfrac{{{u_{n + 2}} - {u_1}}}{d} = \dfrac{{23 - \left( { - 3} \right)}}{2} = 13\) \( \Leftrightarrow n = 12\)
Hướng dẫn giải:
Coi \({u_1} = - 3,\,\,{u_{n + 2}} = 23\), tìm \(d\) và các số hạng cần tìm, sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\).