Câu hỏi:
2 năm trước

Cho hai đường tròn $\left( O \right);\left( {O'} \right)$ tiếp xúc ngoài tại $A$. Kẻ tiếp tuyến chung ngoài $MN$ với $M \in \left( O \right)$; $N \in \left( {O'} \right)$. Gọi $P$ là điểm đối xứng với $M$ qua $OO'$; $Q$ là điểm đối xứng với $N$ qua $OO'$.

Khi đó, tứ giác $MNQP$ là hình gì?

Trả lời bởi giáo viên

Đáp án đúng: a

Vì $P$ là điểm đối xứng với $M$ qua $OO'$;

$Q$ là điểm đối xứng với $N$ qua $OO'$ nên $MN = PQ$;

$P \in \left( O \right);Q \in \left( {O'} \right)$

và $MP \bot OO';NQ \bot OO' $

$\Rightarrow MP{\rm{//}}NQ$ mà $MN = PQ$

nên $MNPQ$ là hình thang cân.

Hướng dẫn giải:

Sử dụng tính chất tiếp tuyến và dấu hiệu nhận biết các hình đặc biệt

Câu hỏi khác