Cho cơ hệ như hình bên. Vật m khối lượng \(100{\rm{ }}g\) có thể chuyển động tịnh tiến, không ma sát trên mặt phẳng nằm ngang dọc theo trục lò xo có \(k{\rm{ }} = {\rm{ }}40{\rm{ }}N/m\). Vật M khối lượng \(300{\rm{ }}g\) có thể trượt trên m với hệ số ma sát \(\mu {\rm{ }} = {\rm{ }}0,2\). Ban đầu, giữ m đứng yên ở vị trí lò xo dãn \(4,5{\rm{ }}cm\) , dây D (mềm, nhẹ, không dãn) song song với trục lò xo. Biết M luôn ở trên m và mặt tiếp xúc giữa hai vật nằm ngang. Lấy \(g{\rm{ }} = {\rm{ }}10{\rm{ }}m/{s^2}\) . Thả nhẹ cho m chuyển động. Tính từ lúc thả đến khi lò xo trở về trạng thái có chiều dài tự nhiên lần thứ 3 thì tốc độ trung bình của m là:
Trả lời bởi giáo viên
Lực ma sát giữa M và m làm cho lò xo có độ dãn \(\Delta {\ell _0} = \dfrac{{\mu Mg}}{k} = \dfrac{{0,2.0,3.10}}{{40}} = 0,015m = 1,5cm\).
Vật m đi từ vị trí lò xo giãn 4,5cm qua vị trí lò xo có chiều dài tự nhiên lần thứ nhất đến vị trí biên đối diện rồi đổi chiều qua vị trí lò xo có chiều dài tự nhiên lần thứ 2; tiếp tục chạy đến vị trí biên rồi đồi chiều về vị trí lò xo có chiều dài tự nhiên lần thứ 3.
+ Giai đoạn 1:\(\left\{ \begin{array}{l}{A_1} = 4,5 - 1,5 = 3cm\\{t_1} = \dfrac{{{T_1}}}{2} = \dfrac{1}{2}2\pi \sqrt {\dfrac{m}{k}} = \dfrac{\pi }{{20}}s\\{S_1} = 2{A_1} = 2.3 = 6cm\end{array} \right.\). ( dây căng, vật M không dao động )
+ Giai đoạn 2: \(\left\{ \begin{array}{l}{A_2} = 3 - 1,5 = 1,5cm\\{t_2} = \dfrac{{{T_2}}}{4} = \dfrac{1}{4}2\pi \sqrt {\dfrac{{m + M}}{k}} = \dfrac{\pi }{{20}}s\\{S_2} = {A_2} = 1,5cm\end{array} \right.\). (dây trùng, vật M dao động cùng với m)
+ Giai đoạn 3: \(\left\{ \begin{array}{l}{S_3} = 2.1,5 = 3cm\\{t_3} = \dfrac{1}{2}2\pi \sqrt {\dfrac{{m + M}}{k}} = \dfrac{\pi }{{10}}s\end{array} \right.\) (dây trùng, vật M dao động cùng với m)
\({v_{TB}} = \dfrac{{{S_1} + {S_2} + {S_3}}}{{{t_1} + {t_2} + {t_3}}} = \dfrac{{6 + 1.5 + 3}}{{\dfrac{\pi }{{20}} + \dfrac{\pi }{{20}} + \dfrac{\pi }{{10}}}} = 16.71126902\;(cm/s)\)
Hướng dẫn giải:
+ Vận dụng biểu thức tính lực ma sát: \({F_{ms}} = \mu mg\)
+ Vận dụng biểu thức tính chu kì dao động: \(T = 2\pi \sqrt {\dfrac{m}{k}} \)
+ Sử dụng biểu thức tính tốc độ trung bình: \({v_{tb}} = \dfrac{s}{t}\)