Câu hỏi:
2 năm trước
Cho các giới hạn:\(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = 3\) , \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = 4\) . Khi đó \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {3f\left( x \right) - 4g\left( x \right)} \right]\) bằng
Trả lời bởi giáo viên
Đáp án đúng: d
\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} [3f(x) - 4g(x)] = 3.3 - 4.4 = - 7\)
Hướng dẫn giải:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = M;\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = L\\\mathop {\lim }\limits_{x \to {x_0}} \left[ {f(x) \pm g(x)} \right] = M \pm L\end{array}\)
\(\mathop {\lim }\limits_{x \to {x_0}} [k.f(x)] = k.M\)