Cho biểu thức \(S = C_{2017}^{1009} + C_{2017}^{1010} + C_{2017}^{1011} + C_{2017}^{1012}... + C_{2017}^{2017}\). Khẳng định nào sau đây đúng?
Trả lời bởi giáo viên
Áp dụng tính chất \(C_n^k = C_n^{n - k}\) ta có:
\(S = C_{2017}^{1009} + C_{2017}^{1010} + C_{2017}^{1011} + C_{2017}^{1012}... + C_{2017}^{2017} = C_{2017}^{1008} + C_{2017}^{1007} + C_{2017}^{1006} + C_{2017}^{1005}... + C_{2017}^0\)
Suy ra \(2S = C_{2017}^0 + ... + C_{2017}^{1005} + C_{2017}^{1006} + C_{2017}^{1007} + C_{2017}^{1008} + C_{2017}^{1009} + C_{2017}^{1010} + C_{2017}^{1011} + C_{2017}^{1012}... + C_{2017}^{2017}\)
Ta có: \({\left( {a + b} \right)^{2017}} = C_{2017}^0{a^{2017}} + C_{2017}^1{a^{2016}}b + C_{2017}^2{a^{2015}}{b^2} + ... + C_{2017}^{2016}a{b^{2016}} + C_{2017}^{2017}{b^{2017}}\)
Thay \(a = 1,b = 1\) ta có:
\(\begin{array}{l}{2^{2017}} = C_{2017}^0 + C_{2017}^1 + C_{2017}^2 + ... + C_{2017}^{2016} + C_{2017}^{2017}\\ \Leftrightarrow {2^{2017}} = 2S \Leftrightarrow S = {2^{2016}}\end{array}\)
Hướng dẫn giải:
+) Xuất phát từ khai triển nhị thức \({\left( {a + b} \right)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + C_n^2{a^{n - 2}}{b^2} + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
+) Thay \(a,b,n\) bằng các giá trị thích hợp.
+) Áp dụng tính chất \(C_n^k = C_n^{n - k}\)