Câu hỏi:
2 năm trước

Cho biểu thức \(f\left( x \right) = \dfrac{{2 - x}}{{x + 1}} + 2.\) Tập hợp tất cả các giá trị của \(x\) thỏa mãn bất phương trình \(f\left( x \right) < 0\) là

Trả lời bởi giáo viên

Đáp án đúng: c

- Ta có $f\left( x \right) = \dfrac{{2 - x}}{{x + 1}} + 2 = \dfrac{{2 - x + 2\left( {x + 1} \right)}}{{x + 1}} = \dfrac{{x + 4}}{{x + 1}}.$

Phương trình $x + 4 = 0 \Leftrightarrow x =  - \,4$ và $x + 1 = 0 \Leftrightarrow x =  - \,1.$

- Bảng xét dấu

Lời giải - Đề kiểm tra giữa học kì 2 - Đề số 1 - ảnh 1

Dựa vào bảng xét dấu, ta thấy rằng $f\left( x \right) < 0 \Leftrightarrow x \in \left( { - \,4; - \,1} \right).$

Hướng dẫn giải:

- Rút gọn \(f\left( x \right)\) đưa \(f\left( x \right)\) về dạng thương của các nhị thức bậc nhất.

- Xét dấu các nhị thức bậc nhất đó rồi suy ra dấu của \(f\left( x \right)\).

Câu hỏi khác