Trả lời bởi giáo viên
* \({a^2} + 3 + 2a\)\( = {a^2} + 2a + 1 + 2\) \( = {(a + 1)^2} + 2 > 0\) (luôn đúng) nên \({a^2} + 3 > - 2a\) nên A đúng.
* \({a^2} + 8 - 4a - 4\) \( = {a^2} - 4a + 4 = {\left( {a - 2} \right)^2} \ge 0\) (luôn đúng) nên \({a^2} + 8 \ge 4a + 4\) hay \(4a + 4 \le {a^2} + 8\) nên B đúng.
* \({a^2} + 1 - a\)\( = {a^2} - 2a.\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4}\) \( = {\left( {a - \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\) (luôn đúng) nên \({a^2} + 1 > a\) hay C sai.
* Ta có:
\(\begin{array}{l}{a^2} \ge ab - {b^2} \Leftrightarrow {a^2} - ab + {b^2} \ge 0\\ \Leftrightarrow {a^2} - 2a.\dfrac{b}{2} + \dfrac{{{b^2}}}{4} + \dfrac{{3{b^2}}}{4} \ge 0\\ \Leftrightarrow {\left( {a - \dfrac{b}{2}} \right)^2} + \dfrac{{3{b^2}}}{4} \ge 0\end{array}\)
Vì \({\left( {a - \dfrac{b}{2}} \right)^2} + \dfrac{{3{b^2}}}{4} \ge 0\)(luôn đúng) nên \({a^2} \ge ab - {b^2}\) hay D đúng.
Hướng dẫn giải:
Phương pháp xét hiệu.