Tứ giác $ABCD$ có $AB = 8\,cm,BC = 15\,cm,CD = 18\,cm,AD = 10\,cm,BD = 12\,cm.$
Chọn câu đúng nhất:
Trả lời bởi giáo viên
Ta có \(\dfrac{{AB}}{{BD}} = \dfrac{{AD}}{{BC}} = \dfrac{{BD}}{{DC}}\) (vì \(\dfrac{8}{{12}} = \dfrac{{10}}{{15}} = \dfrac{{12}}{{18}}\,\left( { = \dfrac{2}{3}} \right)\) )
nên \(\Delta ABD\)\(\backsim\) \(\Delta BDC\,\left( {c - c - c} \right)\)
\(\Delta ABD\)\(\backsim\)\(\Delta BDC\)nên \(\widehat {ABD} = \widehat {BDC}.\) Mà hai góc này ở vị trí so le trong nên $AB$ //$CD$ . Vậy $ABCD$ là hình thang.
Lại có \(B{D^2} = 144 < 164 = A{D^2} + A{B^2}\) nên \(\Delta ABD\) không vuông. Do đó \(ABCD\) không là hình thang vuông.
Vậy A, B đều đúng, C sai.
Hướng dẫn giải:
+ Sử dụng cách chứng minh hai tam giác đồng dạng theo trường hợp cạnh-cạnh-cạnh.
+ Từ đó suy ra cặp góc tương ứng bằng nhau để chứng minh hai đường thẳng song song
+ Suy ra \(ABCD\) là hình thang.