Trong nguyên tử hidro, tổng của bán kính quỹ đạo thứ \(n\) và bán kính quỹ đạo thứ \(\left( {n + 7} \right)\) bằng bán kính quỹ đạo thứ \(\left( {n + 8} \right)\). Biết bán kính \(r_0=5,3.10^{-11}\). Coi chuyển động của electron quanh hạt nhân là chuyển động tròn đều. Lực tương tác giữa electron và hạt nhân khi electron chuyển động trên quỹ đạo dừng thứ n gần giá trị nào nhất sau đây?
Trả lời bởi giáo viên
Theo đề bài ta có:
\(\begin{array}{l}{r_n} + {r_{n + 7}} = {r_{n + 8}}\\ \Leftrightarrow {n^2}{r_0} + {(n + 7)^2}{r_0} = {(n + 8)^2}{r_0}\\ \Leftrightarrow {n^2} + {\left( {n + 7} \right)^2} = {\left( {n + 8} \right)^2}\\ \Leftrightarrow {n^2} - 2n - 15 = 0\\ \Rightarrow \left[ \begin{array}{l}n = 5\\n = - 3\left( {loai} \right)\end{array} \right.\end{array}\)
Khi đó lực tương tác giữa electron và hạt nhân trong nguyên tử hidro ở quỹ đạo dừng n là :
\(F = \dfrac{{k{e^2}}}{{{r^2}}} = \dfrac{{{{9.10}^9}.{{(1,{{6.10}^{ - 19}})}^2}}}{{{{(25.5,{{3.10}^{ - 11}})}^2}}} = 1,{3.10^{ - 10}}N\)
Hướng dẫn giải:
+ Sử dụng công thức tính bán kính quỹ đạo \({r_n} = {\text{ }}{n^2}.{r_0}\)
+ Sau đó áp dụng công thức tính lực Cu – lông : \(F = \dfrac{{k{e^2}}}{{{r^2}}}\)