Trong mặt phẳng tọa độ Oxy, cho các vecto \(\overrightarrow a = \left( {3; - 1} \right),\,\,\overrightarrow b = \left( {5; - 4} \right),\,\,\overrightarrow c = \left( {1; - 5} \right).\) Biết \(\overrightarrow c = x\overrightarrow a + y\overrightarrow b .\) Tính x + y.
Trả lời bởi giáo viên
Ta có: \(\overrightarrow c = x\overrightarrow a + y\overrightarrow b \)
\(\begin{array}{l} \Leftrightarrow \left( {1; - 5} \right) = x\left( {3; - 1} \right) + y\left( {5; - 4} \right)\\ \Leftrightarrow \left( {1; - 5} \right) = \left( {3x; - x} \right) + \left( {5y; - 4y} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}1 = 3x + 5y\\ - 5 = - x - 4y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = - 3\\y = 2\end{array} \right.\\ \Rightarrow x + y = - 3 + 2 = - 1.\end{array}\)
Hướng dẫn giải:
Cho các vecto \(\overrightarrow a = \left( {{a_1};\,\,{a_2}} \right),\,\,\overrightarrow b = \left( {{b_1};\,\,{b_2}} \right)\) và \(k \in \mathbb{R}\) ta có: \(\left\{ \begin{array}{l}\overrightarrow a + \overrightarrow b = \left( {{a_1} + {b_1};\,\,{a_2} + {b_2}} \right)\\k\overrightarrow a = k\left( {{a_1};\,\,{a_2}} \right) = \left( {k{a_1};\,\,k{a_2}} \right)\end{array} \right..\)