Câu hỏi:
2 năm trước

Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(M\left( 1;2;3 \right).\) Mặt phẳng \(\left( P \right)\) đi qua M và cắt các tia \(Ox;\,\,Oy;\,\,Oz\) lần lượt tại các điểm \(A;\,\,B;\,\,C\) \(\left( A;\,\,B;\,\,C\ne O \right)\) sao cho thể tích của tứ diện \(OABC\) nhỏ nhất. Phương trình của mặt phẳng \(\left( P \right)\) là

Trả lời bởi giáo viên

Đáp án đúng: b

Gọi \(A\left( a;0;0 \right),\,\,B\left( 0;b;0 \right),\,\,C\left( 0;0;c \right)\)\(\Rightarrow \) Phương trình mặt phẳng \(\left( P \right):\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1.\)

Vì \(OA,\,\,OB,\,\,OC\) đôi một vuông góc \(\Rightarrow \) Thể tích khối chóp \(O.ABC\) là \(V=\dfrac{1}{6}OA.OB.OC=\dfrac{abc}{6}.\)

Điểm \(M\in \left( P \right)\) suy ra \(1=\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\ge 3\sqrt[3]{\dfrac{1}{a}.\dfrac{2}{b}.\dfrac{3}{c}}\) \(\Leftrightarrow 1\ge {{3}^{3}}.\dfrac{6}{abc}\) \(\Rightarrow abc\ge 162\Rightarrow V\ge 27.\)

Dấu bằng xảy ra khi và chỉ khi \(\dfrac{1}{a}=\dfrac{2}{b}=\dfrac{3}{c}=\dfrac{1}{3}\Rightarrow \left\{ \begin{align}  & a=3 \\ & b=6 \\ & c=9 \\\end{align} \right..\) Vậy \(\left( P \right):\dfrac{x}{3}+\dfrac{y}{6}+\dfrac{z}{9}=1.\)

Hướng dẫn giải:

+) Gọi \(A\left( a;0;0 \right),\,\,B\left( 0;b;0 \right),\,\,C\left( 0;0;c \right)\)\(\Rightarrow \) Phương trình mặt phẳng \(\left( P \right):\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1.\)

+) Vì mặt phẳng chắn trên các trục tọa độ nên sử dụng phương trình đoạn chắn và áp dụng bất đẳng thức AM – GM cho việc xác định thể tích min. Từ đó lập được phương trình mặt phẳng.

Câu hỏi khác