Câu hỏi:
2 năm trước
Tính giá trị của biểu thức $A = \sqrt {{{\left( {{a^e} + {b^e}} \right)}^2} - {{\left( {{4^{\dfrac{1}{e}}}ab} \right)}^e}} $ khi $a = e;b = 2e$.
Trả lời bởi giáo viên
Đáp án đúng: a
$A = \sqrt {{{\left( {{a^e} + {b^e}} \right)}^2} - {{\left( {{4^{\dfrac{1}{e}}}ab} \right)}^e}} = \sqrt {{a^{2e}} + 2{a^e}{b^e} + {b^{2e}} - 4{a^e}{b^e}} $
$= \sqrt {{a^{2e}} - 2{a^e}{b^e} + {b^{2e}}} = \sqrt {{{\left( {{a^e} - {b^e}} \right)}^2}} = \left| {{a^e} - {b^e}} \right|$
Với $a = e;b = 2e$ thì $A = \left| {{a^e} - {b^e}} \right| = \left| {{e^e} - {{\left( {2e} \right)}^e}} \right| = \left( {{2^e} - 1} \right){e^e}$
Hướng dẫn giải:
Rút gọn biểu thức $A$, sử dụng công thức ${\left( {{a^x}} \right)^y} = {a^{xy}}$ và các hằng đẳng thức đã biết.