Trả lời bởi giáo viên
\(\begin{array}{l}\,\,\,\,\,\,\sqrt {3{x^2} - 4x + 4} = 3x + 2\\ \Leftrightarrow \left\{ \begin{array}{l}3x + 2 \ge 0\\3{x^2} - 4x + 4 = {\left( {3x + 2} \right)^2}\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ge - \dfrac{2}{3}\\3{x^2} - 4x + 4 = 9{x^2} + 12x + 4\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x \ge - \dfrac{2}{3}\\6{x^2} + 16x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge - \dfrac{2}{3}\\\left[ \begin{array}{l}x = - \dfrac{8}{3}\\x = 0\end{array} \right.\end{array} \right.\\ \Leftrightarrow x = 0\end{array}\)
Vậy tập nghiệm của phương trình là \(S = \left\{ 0 \right\}\).
Hướng dẫn giải:
Giải phương trình chứa căn: \(\sqrt A = B \Leftrightarrow \left\{ \begin{array}{l}B \ge 0\\A = {B^2}\end{array} \right.\).