Câu hỏi:
2 năm trước
Tìm \(P\) biết \(\dfrac{{x - 1}}{{{x^2} + x + 1}} - P = \dfrac{2}{{x - 1}} + \dfrac{{3x}}{{1 - {x^3}}}\).
Trả lời bởi giáo viên
Đáp án đúng: d
ĐK: \(x \ne 1\).
\(\begin{array}{l}\dfrac{{x - 1}}{{{x^2} + x + 1}} - P = \dfrac{2}{{x - 1}} + \dfrac{{3x}}{{1 - {x^3}}}\\P = \dfrac{{x - 1}}{{{x^2} + x + 1}} - \dfrac{2}{{x - 1}} - \dfrac{{3x}}{{1 - {x^3}}}\\P = \dfrac{{{{(x - 1)}^2} - 2({x^2} + x + 1) + 3x}}{{(x - 1)({x^2} + x + 1)}}\\P = \dfrac{{{x^2} - 2x + 1 - 2{x^2} - 2x - 2 + 3x}}{{(x - 1)({x^2} + x + 1)}}\\P = \dfrac{{ - x{}^2 - x - 1}}{{(x - 1)({x^2} + x + 1)}}\\P = - \dfrac{1}{{x - 1}}.\end{array}\)
Hướng dẫn giải:
Sử dụng quy tắc chuyển vế, trừ các phân thức khác mẫu và rút gọn.