Trả lời bởi giáo viên
Đáp án A: Mệnh đề \(\forall x \in \mathbb{R},\,\,{x^3} - {x^2} + 1 > 0\) sai chẳng hạn khi $x = - 1$ ta có \({\left( { - 1} \right)^3} - {\left( { - 1} \right)^2} + 1 = - 1 < 0\)
Đáp án B: Mệnh đề \(\forall x \in \mathbb{R},\,\,{x^4} - {x^2} + 1 = \left( {{x^2} + \sqrt 3 x + 1} \right)\left( {{x^2} - \sqrt 3 x + 1} \right)\) đúng vì
\(\,{x^4} - {x^2} + 1 = {\left( {{x^2} + 1} \right)^2} - 3{x^2} = \left( {{x^2} + \sqrt 3 x + 1} \right)\left( {{x^2} - \sqrt 3 x + 1} \right)\)
Đáp án C: Mệnh đề \(\exists x \in N,\,\,{n^2} + 3\) chia hết cho $4$ đúng vì \(n = 1 \in N\)và \({n^2} + 3 = 4 \vdots 4\)
Đáp án D: Mệnh đề "\(\forall n \in N,\,n\left( {n + 1} \right)\) là một số chẵn" đúng vì \(n,n + 1\) là hai số tự nhiên liên tiếp và trong hai số tự nhiên liên tiếp luôn có \(1\) số chẵn nên tích của chúng chia hết cho \(2\) (là một số chẵn)
Hướng dẫn giải:
Xét tính đúng sai của từng đáp án bằng cách chứng minh mệnh đề đúng và chỉ ra phản ví dụ cho mệnh đề sai.