Tìm $m$ để phương trình $2m{x^2} - \left( {2m + 1} \right)x - 3 = 0$ có nghiệm là $x = 2$.
Trả lời bởi giáo viên
Thay $x = 2$ vào phương trình $2m{x^2} - \left( {2m + 1} \right)x - 3 = 0$ ta được: $2m{.2^2} - \left( {2m + 1} \right).2 - 3 = 0 \Leftrightarrow 4m - 5 = 0 \Leftrightarrow m = \dfrac{5}{4}$
Vậy $m = \dfrac{5}{4}$ là giá trị cần tìm.
Hướng dẫn giải:
Thay $x = {x_0}$ vào phương trình đã cho ta được phương trình ẩn $m$. Giải phương trình ta tìm được $m$.
Câu hỏi khác
Điền vào các vị trí $\left( 1 \right);\left( 2 \right)$ trong bảng sau ($R$ là bán kính của đường tròn, $d$ là khoảng cách từ tâm đến đường thẳng) :
$R$ |
$d$ |
Vị trí tương đối của đường thẳng và đường tròn |
$5cm$ |
$\,4\,cm$ |
...............$\left( 1 \right)$................... |
$8cm$ |
...$\left( 2 \right)$... |
Tiếp xúc nhau |