Trả lời bởi giáo viên
Ta có \(3x\left( {x - 2} \right) - x + 2 = 0\)\( \Leftrightarrow 3x\left( {x - 2} \right) - \left( {x - 2} \right) = 0 \Leftrightarrow \left( {x - 2} \right)\left( {3x - 1} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}x - 2 = 0\\3x - 1 = 0\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = 2\\3x = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = \dfrac{1}{3}\end{array} \right.\)
Vậy \(x = 2;\,x = \dfrac{1}{3}\)
Hướng dẫn giải:
+ Sử dụng phương pháp đặt nhân tử chung để phân tích đa thức thành nhân tử
+ Từ đó đưa về dạng \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}A = 0\\B = 0\end{array} \right.\)
Giải thích thêm:
Một số em có thể sai dấu ở bước phân tích \( - x + 2 = \left( {x - 2} \right)\) dẫn đến ra sai đáp án.