Tìm \(f\left( 4 \right)\) biết rằng \(\int\limits_{0}^{f\left( x \right)}{{{t}^{2}}\,\text{d}t}=x.\cos \pi x.\)
Trả lời bởi giáo viên
Gọi \(G\left( t \right)\) là một nguyên hàm của hàm số \(g\left( t \right)={{t}^{2}}\,\,\Rightarrow \,\,G\left( t \right)=\frac{{{t}^{3}}}{3}.\)
Ta có \(\int\limits_{0}^{f\left( x \right)}{{{t}^{2}}\,\text{d}t}=x.\cos \pi x\Leftrightarrow \left. \frac{{{t}^{3}}}{3} \right|_{0}^{f\left( x \right)}\Leftrightarrow \frac{{{f}^{3}}\left( x \right)}{3}=x\cos \pi x\)
\(\Leftrightarrow {{f}^{3}}\left( x \right)=3x\cos \pi x\Leftrightarrow f\left( x \right)=\sqrt[3]{3x\cos \pi x}. \ \ \left( * \right)\)
Thay \(x=4\) vào đẳng thức \(\left( * \right),\) ta được \(f\left( 4 \right)=\sqrt[3]{3.4.\cos 4\pi }=\sqrt[3]{12}.\)
Hướng dẫn giải:
Yêu cầu nắm vững lí thuyết của nguyên hàm, từ đó đạo hàm hai vế của đẳng thức tìm ra được hàm số f(x).