Trả lời bởi giáo viên
Phương pháp tự luận
$\begin{array}{c}I = \int\limits_0^{2\pi } {\sqrt {{{\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)}^2}} } dx = \int\limits_0^{2\pi } {\left| {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right|} dx = \sqrt 2 \int\limits_0^{2\pi } {\left| {\sin \left( {\dfrac{x}{2} + \dfrac{\pi }{4}} \right)} \right|} dx\\ = \sqrt 2 \left[ {\int\limits_0^{\dfrac{{3\pi }}{2}} {\sin \left( {\dfrac{x}{2} + \dfrac{\pi }{4}} \right)} dx - \int\limits_{\dfrac{{3\pi }}{2}}^{2\pi } {\sin \left( {\dfrac{x}{2} + \dfrac{\pi }{4}} \right)dx} } \right] = 4\sqrt 2 \end{array}$
Hướng dẫn giải:
Dùng biến đổi \(1 + \sin x = {\left( {\sin \dfrac{x}{2} + \cos \dfrac{x}{2}} \right)^2}\) và công thức nguyên hàm hàm lượng giác \(\int {\sin \left( {ax + b} \right)dx} = - \dfrac{1}{a}\cos \left( {ax + b} \right) + C\)
Giải thích thêm:
Phương pháp trắc nghiệm
Bấm máy tính $I = \int\limits_0^{2\pi } {\sqrt {1 + \sin x} } dx - 4\sqrt 2 $ được đáp số là 0. Vậy đáp án là $4\sqrt 2 $.
Chú ý đưa máy tính về chế độ Rad.