Trả lời bởi giáo viên
+ Vì \(\widehat {xOy}\) và \(\widehat {yOz}\) là hai góc kề bù nên \(\widehat {xOy} + \widehat {yOz} = 180^\circ \) mà \(\widehat {xOy} = 120^\circ \) nên \(\widehat {yOz} = 180^\circ - 120^\circ = 60^\circ \)
+ Vì tia \(Om\) nằm trong góc \(\widehat {yOz}\) nên tia \(Om\) nằm giữa hai tia \(Oy;Oz\) (1)
Do đó \(\widehat {yOm} + \widehat {mOz} = \widehat {yOz}\) suy ra \(\widehat {mOz} = \widehat {yOz} - \widehat {yOm} = 60^\circ - 30^\circ = 30^\circ \)
Hay \(\widehat {mOz} = \widehat {yOm} = 30^\circ \) (2)
Từ (1) và (2) suy ra tia \(Om\) là tia phân giác của \(\widehat {yOz}\)
Hướng dẫn giải:
Sử dụng tổng hai góc kề bù bằng \(180^\circ \) để tính \(\widehat {yOz}\)
Sử dụng công thức cộng góc để tính \(\widehat {mOz}\)
Sử dụng định nghĩa tia phân giác để kết luận.