Số nghiệm của phương trình \(2\sin \left( {x + \dfrac{\pi }{4}} \right) - 2 = 0\) với \(\pi \le x \le 5\pi \) là:
Trả lời bởi giáo viên
Ta có:
\(2\sin \left( {x + \dfrac{\pi }{4}} \right) - 2 = 0 \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} \right) = 1 \Leftrightarrow x + \dfrac{\pi }{4} = \dfrac{\pi }{2} + k2\pi \Leftrightarrow x = \dfrac{\pi }{4} + k2\pi \left( {k \in Z} \right)\)
Mà \(\pi \le x \le 5\pi \Rightarrow \pi \le \dfrac{\pi }{4} + k2\pi \le 5\pi \Leftrightarrow \dfrac{{3\pi }}{4} \le k2\pi \le \dfrac{{19\pi }}{4} \Leftrightarrow \dfrac{3}{8} \le k \le \dfrac{{19}}{8} \Rightarrow k \in \left\{ {1;2} \right\}\)
Vậy phương trình có hai nghiệm trong đoạn \(\left[ {\pi ;5\pi } \right]\).
Hướng dẫn giải:
Biến đổi phương trình về dạng \(\sin x = m\) rồi sử dụng phương trình lượng giác cơ bản \(\sin x = \sin \alpha \Leftrightarrow \left[ \begin{array}{l}x = \alpha + k2\pi \\x = \pi - \alpha + k2\pi \end{array} \right.\)
Giải thích thêm:
Một số em có thể sẽ chọn nhầm đáp án C vì xác định sai các giá trị của \(k\) khi thay vào điều kiện đề bài.