Rút gọn biểu thức \(\left( {\dfrac{{{x^{\frac{1}{2}}} - {y^{\frac{1}{2}}}}}{{x{y^{\frac{1}{2}}} + {x^{\frac{1}{2}}}y}} + \dfrac{{{x^{\frac{1}{2}}} + {y^{\frac{1}{2}}}}}{{x{y^{\frac{1}{2}}} - {x^{\frac{1}{2}}}y}}} \right).\dfrac{{{x^{\frac{3}{2}}}{y^{\frac{1}{2}}}}}{{x + y}} - \dfrac{{2y}}{{x - y}}\) ta được kết quả là:
Trả lời bởi giáo viên
\(\begin{array}{l}\,\,\,\,\left( {\dfrac{{{x^{\frac{1}{2}}} - {y^{\frac{1}{2}}}}}{{x{y^{\frac{1}{2}}} + {x^{\frac{1}{2}}}y}} + \dfrac{{{x^{\frac{1}{2}}} + {y^{\frac{1}{2}}}}}{{x{y^{\frac{1}{2}}} - {x^{\frac{1}{2}}}y}}} \right).\dfrac{{{x^{\frac{3}{2}}}{y^{\frac{1}{2}}}}}{{x + y}} - \dfrac{{2y}}{{x - y}}\\ = \left( {\dfrac{{\sqrt x - \sqrt y }}{{x\sqrt y + \sqrt x .y}} + \dfrac{{\sqrt x + \sqrt y }}{{x\sqrt y - \sqrt x .y}}} \right).\dfrac{{x\sqrt x .\sqrt y }}{{x + y}} - \dfrac{{2y}}{{x - y}}\\ = \left( {\dfrac{{\sqrt x - \sqrt y }}{{\sqrt {xy} \left( {\sqrt x + \sqrt y } \right)}} + \dfrac{{\sqrt x + \sqrt y }}{{\sqrt {xy} \left( {\sqrt x - \sqrt y } \right)}}} \right).\dfrac{{x\sqrt x .\sqrt y }}{{x + y}} - \dfrac{{2y}}{{x - y}}\\ = \dfrac{{{{\left( {\sqrt x - \sqrt y } \right)}^2} + {{\left( {\sqrt x + \sqrt y } \right)}^2}}}{{\sqrt {xy} \left( {\sqrt x + \sqrt y } \right)\left( {\sqrt x - \sqrt y } \right)}}.\dfrac{{x\sqrt x .\sqrt y }}{{x + y}} - \dfrac{{2y}}{{x - y}}\\ = \dfrac{{x - 2\sqrt {xy} + y + x + 2\sqrt {xy} + y}}{{\sqrt {xy} \left( {\sqrt x + \sqrt y } \right)\left( {\sqrt x - \sqrt y } \right)}}.\dfrac{{x\sqrt x .\sqrt y }}{{x + y}} - \dfrac{{2y}}{{x - y}}\\ = \dfrac{{2\left( {x + y} \right)}}{{\left( {\sqrt x + \sqrt y } \right)\left( {\sqrt x - \sqrt y } \right)}}.\dfrac{x}{{x + y}} - \dfrac{{2y}}{{x - y}}\\ = \dfrac{{2x}}{{x - y}} - \dfrac{{2y}}{{x - y}}\\ = \dfrac{{2\left( {x - y} \right)}}{{x - y}} = 2\end{array}\)
Hướng dẫn giải:
- Sử dụng công thức \(\sqrt[m]{{{a^n}}} = {a^{\frac{n}{m}}}\).
- Quy đồng và rút gọn, sử dụng linh hoạt các hằng đẳng thức.