Trả lời bởi giáo viên
Đáp án đúng: d
ĐKXĐ: x≠2;x≠5
xx−5−3x−2=1⇔xx−5−3x−2−1=0⇔x(x−2)−3(x−5)−1(x−2)(x−5)(x−2)(x−5)=0⇒x(x−2)−3(x−5)−1(x−2)(x−5)=0⇔x2−2x−3x+15−x2+7x−10=0⇔2x+5=0⇔2x=−5⇔x=−52(tmdk).
Hướng dẫn giải:
+ Tìm ĐKXĐ của phương trình.
+ Quy đồng mẫu rồi khử mẫu.
+ Giải phương trình vừa nhận được.
+ Đối chiếu điều kiện rồi kết luận nghiệm.