Phương trình \(\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\) có nghiệm là
Trả lời bởi giáo viên
ĐKXĐ: \(x \ne \pm 3\)
\(\begin{array}{l}\dfrac{{6x}}{{9 - {x^2}}} = \dfrac{x}{{x + 3}} - \dfrac{3}{{3 - x}}\\ \Leftrightarrow \dfrac{{6x}}{{\left( {x + 3} \right)\left( {3 - x} \right)}} = \dfrac{{x\left( {3 - x} \right) - 3\left( {x + 3} \right)}}{{\left( {x + 3} \right)\left( {3 - x} \right)}}\\ \Rightarrow 6x = x\left( {3 - x} \right) - 3\left( {x + 3} \right)\\ \Leftrightarrow 6x = 3x - {x^2} - 3x - 9\\ \Leftrightarrow {x^2} + 6x + 9 = 0\\ \Leftrightarrow {\left( {x + 3} \right)^2} = 0\\ \Leftrightarrow x + 3 = 0\\ \Leftrightarrow x = - 3\,\,\,\,\left( {ktm} \right).\end{array}\)
Ta thấy \(x = - 3\) không thỏa mãn ĐKXĐ nên phương trình vô nghiệm.
Hướng dẫn giải:
+ Tìm ĐKXĐ của phương trình.
+ Quy đồng mẫu rồi khử mẫu.
+ Giải phương trình vừa nhận được .
+ Đối chiếu điều kiện rồi kết luận nghiệm.
Giải thích thêm:
Một số em không so sánh kết quả với điều kiện xác định nên ra \(x = - 3\) là nghiệm nên sai đáp án.