Câu hỏi:
2 năm trước

Nghiệm của phương trình  \(\sqrt {4x - 20}  + \sqrt {x - 5}  - \dfrac{1}{3}\sqrt {9x - 45}  = 4\) là

Trả lời bởi giáo viên

Đáp án đúng: d

Điều kiện: $\left\{ \begin{array}{l}4x - 20 \ge 0\\x - 5 \ge 0\\9x - 45 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - 5 \ge 0\\4\left( {x - 5} \right) \ge 0\\9\left( {x - 5} \right) \ge 0\end{array} \right. \Leftrightarrow x - 5 \ge 0 \Leftrightarrow x \ge 5$

Với điều kiện trên ta có \(\sqrt {4x - 20}  + \sqrt {x - 5}  - \dfrac{1}{3}\sqrt {9x - 45}  = 4.\)$ \Leftrightarrow \sqrt {4\left( {x - 5} \right)}  + \sqrt {x - 5}  - \dfrac{1}{3}\sqrt {9\left( {x - 5} \right)}  = 4$

$ \Leftrightarrow \sqrt 4 .\sqrt {x - 5}  + \sqrt {x - 5}  - \dfrac{1}{3}\sqrt 9 \sqrt {x - 5}  = 4 \Leftrightarrow 2\sqrt {x - 5}  + \sqrt {x - 5}  - \dfrac{1}{3}.3.\sqrt {x - 5}  = 4 \Leftrightarrow 2\sqrt {x - 5}  = 4 \Leftrightarrow \sqrt {x - 5}  = 2$

$ \Leftrightarrow x - 5 = {2^2} \Leftrightarrow x - 5 = 4 \Leftrightarrow x = 9\,\left( {TM} \right)$

Vậy nghiệm của phương trình là $x = 9$.

Hướng dẫn giải:

-Tìm điều kiện xác định

-Sử dụng công thức khai phương một tích: Với hai số $a,b$ không âm, ta có $\sqrt {ab}  = \sqrt a .\sqrt b $

và nhóm nhân tử chung để đưa phương trình về dạng đã biết.

-So sánh điều kiện rồi kết luận nghiệm.

Câu hỏi khác