Một thùng rượu vang có dạng hình tròn xoay có hai đáy là hai hình tròn bằng nhau, khoảng cách giữa hai đáy bằng \(80\left( {cm} \right)\). Đường sinh của mặt xung quanh thùng là một phần đường tròn có bán kính \(60\left( {cm} \right)\)(tham khảo hình minh họa bên). Hỏi thùng đó có thể đựng bao nhiêu lít rượu?(làm tròn đến hàng đơn vị)
Trả lời bởi giáo viên
Ta có đường kính mặt cầu là \(60.2 = 120\,\,\,\left( {cm} \right).\)
Mà khoảng cách giữa hai đáy của thùng rượu là \(80cm\)
Nên chiều cao chỏm cầu là \(h = \dfrac{{120 - 80}}{2} = 20\,\,\left( {cm} \right).\)
Thế tích của 1 chỏm cầu chiều cao \(h = 20\) và bán kính \(60cm\)là
\({V_{cc}} = \pi {h^2}\left( {R - \dfrac{h}{3}} \right) = \pi {.20^2}\left( {60 - \dfrac{{20}}{3}} \right) = \dfrac{{64000}}{3}\pi \,\,\left( {c{m^3}} \right) = \dfrac{{64\pi }}{3}\,\,\left( l \right)\)
Thể tích của cả khối cầu bán kính 60 cm là \(V = \dfrac{4}{3}\pi {r^3} = \dfrac{4}{3}\pi {.60^3} = 288000\pi \,\,\left( {c{m^3}} \right) = 288\pi \,\,\left( l \right)\)
Khi đó thể tích thùng rượu là \(V' = V - 2{V_{cc}} = \dfrac{{736}}{3}\pi \,\,\left( l \right) \approx 771\,\,\left( l \right).\)
Hướng dẫn giải:
Áp dụng công thức tính chỏm cầu \({V_{cc}} = \pi {h^2}\left( {R - \dfrac{h}{3}} \right)\), với \(R\) là bán khối cầu, h là chiều cao của chỏm cầu.