Câu hỏi:
2 năm trước
Một hình nón và một hình trụ có bán kính đáy bằng nhau và chiều cao bằng nhau. Tỉ số các thể tích của hình trụ và hình nón bằng
Trả lời bởi giáo viên
Đáp án đúng: a
Vì hình nón và một hình trụ có bán kính đáy bằng nhau và chiều cao bằng nhau nên gọi \(h\) là chiều cao và \(R\) là bán kính đáy khi đó thể tích hình nón ${V_n} = \dfrac{1}{3}\pi {R^2}h$ và thể tích hình trụ ${V_t} = \pi {R^2}h$
Tỉ số thể tích của hình trụ và hình nón là \(\dfrac{{{V_t}}}{{{V_n}}} = \dfrac{{\pi {R^2}h}}{{\dfrac{1}{3}\pi {R^2}h}} = 3.\)
Hướng dẫn giải:
Sử dụng công thức tính thể tích hình nón ${V_n} = \dfrac{1}{3}\pi {R^2}h$ và công thức tính thể tích hình trụ ${V_t} = \pi {R^2}h$